skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vachik S. Dave, Mohammad Al"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the recent years, reciprocal link prediction has received some attention from the data mining and social network analysis researchers, who solved this problem as a binary classification task. However, it is also important to predict the interval time for the creation of reciprocal link. This is a challenging problem for two reasons: First, the lack of effective features, because well-known link prediction features are designed for undirected networks and for the binary classification task, hence they do not work well for the interval time prediction; Second, the presence of censored data instances makes the traditional supervised regression methods unsuitable for solving this problem. In this paper, we propose a solution for the reciprocal link interval time prediction task. We map this problem into survival analysis framework and show through extensive experiments on real-world datasets that, survival analysis methods perform better than traditional regression, neural network based model and support vector regression (SVR). 
    more » « less